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Our Team and Collaborators

� Future Technologies Group
– Sadaf Alam
– Richard Barrett
– Nikhil Bhatia
– Jeff Kuehn
– Collin McCurdy
– Jeremy Meredith
– Ken Roche
– Philip Roth
– Olaf Storaasli
– Jeffrey Vetter
– Weikuan Yu

� Collaborators
– Jacob Barhen
– Pat Worley
– Pratul Agarwal
– Hong Ong
– Core universities (UT, GT, Duke, NCSU, 

…)
– SciDAC PERC Team
– DARPA HPCS Team
– DoD HPCMP
– Georgia Tech CSE Dept, CERCS
– Vendors
– Many others…

� Support Scientific Computation 
through:
– Performance Analysis

– System Evaluation

– Modeling

– HEC Algorithm/Software R&D

� Experimental Computing Lab (ExCL)
– Examine new/emerging technologies

– FPGAs

– Optical processors

– GPUs

– Array processors

– Multicore processors

– …

� System software: OS, performance 
tools, runtime systems

http://www.csm.ornl.gov/ft
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Motivation 

� ITRS predicts that Moore’s Law will be coming to an end in 2012-
2015
– Recent performance gains at chip level are principally derived from 
Moore’s Law

� Low sustained performance on important applications causing 
HEC community to reconsider system designs
– System balance not tuned for specific HEC applications

� Infrastructure (power, cooling, space) impacting system design
– Tempers performance gains of conventional microprocessors

�Market trends drive vendors to favor issues other than 
performance (laptop battery life, etc)
– Culture of “Good-enough computing” -- Economist
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Motivation (cont)

�New constraints define a new utility function
– Sustained performance, reliability, power, floorspace

�Current architectural trends 
– Major vendors moving toward multicore architectures

�Commodity constraints on HEC driving a rebirth of 
computer architecture
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Alternative Architectures Offer Different 
Design Points

� GPUs

� FPGAs

�Mulithreaded processors

� Game processors

� Streaming processors

� Physics and AI chips
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Investigating Diverse Architectures

� Cray X1e, XD1, XT3 (Red Storm)

� IBM BlueGene/L

� IBM SP3, p655

� SGI Altix

� Intel Itanium, Xeon

� IBM POWER5

� IBM Cell

� FPGAs

� GPUs

� Optical processors

� Multithreading

� Array processors, etc.

� Processors-in-memory

� This diversity makes the problem much 
more interesting!

Cray X1

IBM Federation

SGI Altix
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Evaluations are Application Grounded

Data Courtesy P.H.Worley
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GPUs – current technology with a twist
�What are they?

– Graphics Processing Units
– Most “video cards” contain GPU, RAM

• Usually AGP / PCIe cards
• Up to 512 MB RAM, though most contain less

– Accelerate common 3D graphics operations
• Vertex transformations
• Polygon rasterization

� Architecture
– Vertex and Pixel (Fragment) stages

• implicit parallelism
• differing programmability

– Poor support for scatter ops
– High internal bandwidth
– Example: NV 6800 GT

• 6 vertex pipelines
• 16 fragment pipelines
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GPUs – Motivation and Outlook

� Motivation

� High end consumer cards:
– Very high speeds

– Low price (~$500)

– Improving faster than CPUs

– Mass market driven (gaming)

� Example:
– 60 GFLOPS, 16 pipes (4/04)

– 200 GFLOPS, 24 pipes (6/05)

– 400 GFLOPS, 48 pipes (1/06)

� Small scale work in scientific apps
– real-time Navier-Stokes 
simulations

– particle simulations

� A few recent results vs CPU
– 400x for static imagery geo-
registration

– 60x for video geo-registration

– 100x for convolution 
• e.g. sharpen, blur, edge detection

– 26x for hyperspectal covariance

– 17x for discrete cosine transform

– 4x for singular value 
decomposition
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Recent and Ongoing Evaluations
� Cray X1

– P.A. Agarwal, R.A. Alexander et al., “Cray X1 Evaluation Status Report,” ORNL, Oak Ridge, TN, 
Technical Report ORNL/TM-2004/13, 2004.

– T.H. Dunigan, Jr., M.R. Fahey et al., “Early Evaluation of the Cray X1,” Proc. ACM/IEEE Conference 
High Performance Networking and Computing (SC03), 2003.

– T.H. Dunigan, Jr., J.S. Vetter et al., “Performance Evaluation of the Cray X1 Distributed Shared Memory 
Architecture,” IEEE Micro, 25(1):30-40, 2005.

� Cray XD1
– M.R. Fahey, S.R. Alam et al., “Early Evaluation of the Cray XD1,” Proc. Cray User Group Meeting, 

2005, pp. 12.
� Cray XT3

– J. S. Vetter, S. R. Alam et al., “Early Evaluation of the Cray XT3 at ORNL,” Proc. Cray User Group 
Meeting, 2005, pp. 12.

� SGI Altix

– T.H. Dunigan, Jr., J.S. Vetter, and P.H. Worley, “Performance Evaluation of the SGI Altix 3700,” Proc. 
International Conf. Parallel Processing (ICPP), 2005.

� SRC
– M.C. Smith, J.S. Vetter, and X. Liang, “Accelerating Scientific Applications with the SRC-6 

Reconfigurable Computer: Methodologies and Analysis,” Proc. Reconfigurable Architectures Workshop 
(RAW), 2005.

� Underway
– XD1 FPGAs
– ClearSpeed

– EnLight
– Multicore processors: AMD, Intel
– IBM BlueGene/L
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Programming Challenges

� Portability
– Unique software stack and 

programming model for each 
alternative

� Programmer Productivity
� Code Maintenance

� Improving sustained performance is 
equivalent to improving the application 
to architecture mapping

� Data Management
– Bandwidth, latency challenges

� Cost
– These systems must add measurable 

value
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Common Programming Models

� Explicit message passing  -- e.g. MPI

� Explicit one sided communication  -- e.g. SHMEM.

� Compiler directives  -- e.g. OpenMP

� Explicit threading models -- e.g. pthreads, sproc

� Here to stay… for now

� But can we do better?

– I.e. provide code developers with better ways (faster 
development, strong performance)
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Emerging Programming Models

� Partitioned Global Address Space languages.

– Small set of extensions to existing languages enable parallelism
designed to create a global address space, even on machines that
don’t physically have one.

� CoArray Fortran (CAF): 

– SPMD

– User must deal with data distribution.

– Fortran2008 inclusion.

� Unified Parallel C (UPC)

– C like model, with data distribution (mostly) hidden from user.

– Random memory access model (NSA driven)

� Alternates: “Global Arrays” (PNNL), etc.
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Next Generation Programming Models

� DARPA HPCS parallel processing languages (2010).

– independent of architecture program.

� Chapel (Cray, with JPC/CalTech)

– High level multithreaded model

– supports data, task, and nested parallelism.

� X10 (IBM)

– OO, Java-like.

� Fortress (Sun)

– “Java for scientists on peta-scale architectures.” -- Guy Steele (co-author of Java)

� Other players:

– Titanium: Java-based, SPMD (UC Berkeley)
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Application Impact – Fortran CoArrays
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SciDAC 
Fusion

ORNL has Major Efforts Focusing on Grand Challenge 
Scientific Applications 

SciDAC
Astrophysics

Genomes
to Life 

Nanophase Materials SciDAC Climate

SciDAC
Chemistry



Case Study of a Life Sciences Application
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Computational Biology using
Molecular Modeling

� Wide community of biologist are interested in 
the multi-scale modeling of biomolecules

� Structure – Dynamics – Function 

� Spans multiple scales of time and space

� Multi-scale modeling of a real system may require 
1 peta-flop/s for an entire year!

� Scaling of existing software packages and 
algorithms is limited

Joint work between Sadaf Alam and Comp 
Biologist Pratul Agarwal at ORNL.
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Computer Simulations
(Molecular Dynamics)

�Mathematical (potential) function

– Bond stretching, angle bending, angle torsion and the non-
bond term

– Degree of freedom = 3N-6, where N=number of atoms

– Number of points to sample=M3N-6, M >> 10 

– Packages: Amber, GROMACS, GAMESS, LAMMPS, NAMD
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AMBER Performance Analysis

�ORNL Computational biologists were using AMBER for 
their simulations, but its scalability was limited to about 
128 processors

�Used several tools to study AMBER’s performance
– MPIP, PAPI, Xprofiler, GPROF

�Modified communication operations to improve scaling

�Identified computational kernels for acceleration with 
FPGAs
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AMBER Profiling on Cray XT3 and IBM 
BlueGene/L
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Short_ene: mapped to FPGA

Divided and distributed in MPI model

RunMD

Force Shake Update CRD distribute

Non-bond Bond FRC Collect

Generalized Born

GB Computation GB Communication

Amber Control Flow for RUB
(RuBisCO with Generalized Born method)

Main method of Sander

Most expensive on a single node system

Cost increases with 

number of processors 
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RUB Scaling

Rubisco with Generalized Born solvation method (ORNLtest3). Note that on BGL only results 

from 64, 128, 256, 512 nodes run are shown.
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sander

runmd
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Mapping Amber Kernel to FPGAs
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AMBER Summary

�Performance analysis identified communication 
components as limiting scalability

�Improved by code modifications

�Amber scaling was limited to 128 nodes but now we 
have run experiments on 1024 nodes on Bluegene/L and 
on 2048 nodes on Cray XT3

�Achieved close to order of a nano-second/day on early 
evaluation stage supercomputing systems 

�Mapping compute intensive kernel to SRC MapStation
(a reconfigurable computing system)
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Summary

�We are analyzing HPCS applications to help understand current 
and future requirements

� Generating empirical Sequoia traces from large scale experiments
– Developed trace analysis tools to help understand communication scaling

�Developing toolkit that we can distribute that will allow
– Creation of symbolic models that can be evaluated in traditional
environments like MATLAB or Python

– Projections to larger scale

– Sensitivity analysis 

– Allows users to model and validate their applications

– Adding capabilities to allow time transformation
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